
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41108 31

A Review on Hybrid Approach for Game Tree

Search on GPU and CPU

Dipali V. Patil
1
, Kishor N. Shedge

2

M.E. Student, Department of Computer Engineering, SVIT, Nasik, India
1

Assistant Professor, Department of Computer Engineering, SVIT, Nasik, India
2

Abstract: In the field of game theories and artificial intelligence Game tree search is a classical problem. The general

use of GTS algorithm is in real time applications having much higher complexity like video games, chess, connect6,

Go etc. Different algorithms for game tree are used to find the player's next best move on the game tree in minimum

time. Main focus of the system is on increasing massive parallelism capabilities of GPUs to accelerate the speed of

game tree algorithms and propose a general parallel game tree algorithm on GPUs. In game tree search, GPU surpasses

a single CPU if high level of parallelism is achieved because of its searching is in BFS manner and CPU is in DFS

manner so that CPU did not produce improvement. Here combination of DFS and BFS is main focus and selection will

be the depth-first search on CPU and use breadth-first search on GPU. CPU can be responsible for generating number

of choices of players' moves as a tree structure and parallel evaluation of these moves can be perform using GPU. It

intends to look into a hybrid CPU-GPU solutions.

Keywords: SIMD, GPU, GTS, SUDOKU, Parallel Computing.

I. INTRODUCTION

Many applications [4] [5] [6] have get advantage from the

parallelism capability of GPU. Some AI problems can be

easily solved by GPU because of its SIMD architecture

special for parallelism. GPU is stands for Graphical

Processing unit. Single Instruction Multiple Data (SIMD)

architecture of computer having many processing elements

(PE) which perform the same operation on multiple data

points simultaneously and it exploits the data level

parallelism. On the SIMD, single instruction computations

are performed at a time. CUDA development toolkit

supports the parallel work and implemented on GPU. In

AI, Game tree search is important approach and GTS is

used to find the best move for computer games. Parallel

computation on GPU is performed as a concurrently

executing thread blocks set. These are organized into a 1D

grid or 2D grid.1D, 2D or 3D grid with each thread

designated by unique combination of indices. The

hardware schedules the execution of blocks on the

multiprocessors as units of 32 threads called as warps.

Computing on graphics processing units handles

computation only for computer graphics and handled by

GPU, but computation in applications traditionally

handled by the CPU.

A. Game Tree Search

Game tree is a directed graph whose nodes are positions

and edges are moves. Complete game tree of game is the

game tree Starting at the initial position and having all

possible moves from each position. The figure 1 shows the

first two levels, in the game tree for the game tic-tac-toe.

Three choices of move has available for First player: in the

center, at the edge, or in the corner and the second player

has four choices for the reply if first player played in the

center, otherwise two choices and game is continue. GTS

is combinatorial problem therefore hard to find an optimal

solution for many games like Chess and Connect6; hence

focus is find better GTS algorithms to obtain close-optimal

solutions.

Fig1. Game tree for tic-tac-toe

B. CUDA

For highly parallel algorithms CUDA is best platform.

Compute Unified Device Architecture (CUDA) mostly

used for parallel computing. NVIDIA created the

programming model of CUDA and is implemented over

the GPUs. CUDA provides direct access to the virtual

instruction set and memory of the parallel computational

elements in GPUs.

In CUDA, code executed on the GPU in the form of

functions called as kernels. On the GPU for the efficient

implementation of kernels, must consider the limited

amount of resources like on-chip memory and registers.

The properties of the GPU are presented by its compute

capability and are queried at run-time. It is used to adjust

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41108 32

the kernel parameters. Usual template of operation in the

CUDA kernels is to copy the data from global memory to

shared memory, process and copy the results back. All

these steps are executed in parallel.

II. LITERATURE SURVEY

In the previous studies different game tree search

algorithm have been proposed. Parallel GTS algorithm is

the best option to increase the speedup of computer games.

Depend on the granularity of parallelism, parallelism on

the GTS algorithms can be divided into two types, tree

based parallelism and node base parallelism. For the Tree-

based Game Tree Search tree structure is form and which

includes number possible moves of player. Node based

GTS methods compared with existing GPU based methods

used nodes instead of tree as a basic searching unit.

Description of the different GTS algorithms is given

below.

George karypis and vipin Kumar [8] was consider a tree

based Game tree search for the single instruction multiple

data (SIMD) machines. Tree search on SIMD machines

consist of two pats. First is triggering mechanism and

second is redistribution mechanism. Parallel searching on

the unstructured tree provide better efficiency on the

SIMD computers. Also, cost of building large scale

parallel computer is high on MIMD so is better choice.

For the multiple processor platforms APHID:

Asynchronous parallel game tree search method provided

by Brockington and Schaeffer [9]. Which consider the tree

based parallelism for game tree. As compare to

synchronous methods for determining the minimax value

Asynchronous game-tree search algorithms can be

efficient or better.APHID makes the algorithm easy to

integrate into the sequential game-tree searching program.

APHID having better speedup as compare to synchronous

searching methods. Integrating the APHID into the

existing alpha-beta searching program is easy.

P. Borovska and M. Lazarova[10] was proposed minimax

algorithm. Minimax is a game tree search algorithm

divided into two logically stages, the first one for the first

player which is the computer and the second one for the

second player that

is the human. The algorithm tries to find the best legal

move for the computer even if the human plays the best

move. It means, it maximizes the computer score when it

chooses the computer move, while minimizing that score

by choosing the best legal move for the human when

chooses the human move.

M. S. Campbell and T. A. Marsland[11] was proposed

negamax algorithm. Negamax is a similar algorithm for

MiniMax with only one small difference that is, it uses

only the maximization function instead of using both

maximization and minimization functions. This can be

done by negating the value that is returned from children

from the opponent's point of view rather than searching for

minimum score.

D. E. Knuth and R. W. Moore [12] was presented Alpha-

Beta algorithm. Alpha-Beta Algorithm is an intelligent

modification that can be applied in MiniMax or NegaMax

algorithms. Kunth and Moore proved that many branches

could be pruned away of the game tree which decrease the

time needed to finish the tree, it will give the same result

as MiniMax or NegaMax. The main idea of the algorithm

is cutting the uninteresting branches over the game tree.

V. Manohararajah [13] presented the principle variation

splitting algorithm. PVS is a tree based parallel GTS

algorithm using multiple processor. In this PVS algorithm,

the initial branch is marked by 1 as a principle node [24].

In game tree, nodes should be serially searched by first

processor P0 before beginning of parallel search of other

nodes. Other processor has to wait, for finishing the

searching of previous one. One‟s all processor finished

their task, best move to player return by PVS. Drawback

of PVS, processor who has completed their task needs to

wait for another processor.

V. Manohararajah [13] presented the Enhanced principle

variation splitting algorithm. EPVS avoid limitation of

PVS algorithm and use the multiprocessor platform. In the

EPVS algorithm, subtrees are assigned to idle processor

from other busy processor So that efficiency and

performance is increased. Extra communication overhead

will be comes along with EPVS method.

R. M. Hyatt [14] was proposed Dynamic Tree Splitting

algorithm for parallel GTS. Peer-to-peer model for multi-

processor systems is used for DTS. In this split-points list

(SP-LIST) were maintained by which all processors find

uncalculated nodes to process. List is empty at the initial

state. One processor takes the root node of the game tree

and other nodes are in the idle state. If no split points

remain in SP-LIST, HELP message will be broadcast to all

processors with the help of the idle processor. Busy

processor who receives that message will split and copy

state of the subtree at SP-LIST. The idle processor goes

through SP-LIST again to obtain a split point and search

the subtree from that point. If no split point left and all

processors stop in an idle state DTS algorithm completes.

DTS algorithm is usable and scalable compared with PVS

and EPVS

III. MOTIVATIONS

Major Goal of GTS is that finding best move of the

player's that maximizes his/her chances of winning. For

many computer games, hard to find an optimal solution

because GTS is a combinatorial problem in the field of

game theory and it also having an exponential time

complexity. Hence, finding out near optimal solution is

important thing to accelerate the speed of GTS for real

time applications such as real time games on computer.

Main motivation to use the GPU is that, it processes the

thousands of game tree nodes in parallel and many

applications gets benefits from its parallelism capacity.

Game tree In the game theory is directed graph in which

nodes indicates the positions in a game and

whose edges are moves. Game tree starts at the initial

position and containing all the possible moves from each

position. For the many application areas such as artificial

intelligence game trees are the most important because

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41108 33

searching the game tree using the minimax algorithm and

its variants is the one way to find the best move for the

game.

GPU having more computing power, low power

consumption and large memory bandwidth; these factors

make them more applicable. CPU have few cores with lots

of cache and it can handle only few software threads at

one time but On the other side GPU having hundreds of

core so it can handle thousands of threads in parallel.

Hence it is important to investigate that GTS can get

benefit from GPU and compare with GPU-based approach

with CPU-based approaches.

IV. PROPOSED SYSTEM

Some challenging problems arise while working with GPU

and according to previous studies i.e.Low pruning

efficiency of the parallel GTS algorithms, Complexity of

algorithm design for SIMD architecture, Low performance

of divergence on GPU for the rule-based computer games.

To solve these GTS challenges, following node based

parallel method to utilize the potential of GPU can be

adopted.

A. Node-Based Approach

1. Adopt node-based parallel computing for game tree

search.

The tree-based approach is not suite for GPU architecture.

The node based approach is assigning a set of nodes from

one or multiple subtrees to processors, on other side the

tree-based approach is assigned to processors. The use of

method is not only taking advantages of the high

concurrency of GPU similarly avoiding the complexity of

tree splitting.

2 The combination of depth-first search and breadth-first

search.

There are two methods to search the tree, the depth-first

search and the breadth-first search. For GPU based GTS

algorithm, selection is the depth-first search on CPU

because of memory limit and use breadth-first search on

GPU. In BFS method all threads evaluates node in parallel

and for DFS traversing tree structure.

3. Hybrid programming on both CPU and GPU.

Hybrid programming is achieved through GPU-CPU

combination respectively using BFS and DFS methods.

CPU is maintaining game tree structure and perform depth

first search on generated tree and also interacting with

GPU. GPU takes tree nodes from CPU is responsible for

evaluating all nodes in parallel i.e. breadth first search is

performed. Therefore, method is to use both CPU and

GPU architecture in GTS algorithm.

B. Architecture

The most common goal of Game Tree Search is finding of

the players move so that maximizes his chance of winning.

In Game tree, game is spitted into much number of

possible choices these are considered as the possible

moves which is next move for the player. Many of the

choices of the games are computed as sequentially by

processor in Depth First Search manner Using tree-based

approach. Tree based approach can‟t be easily used in

GPU because of the SIMD technique on GPU. Node-based

approach is advantageous over tree-based approach

because in which CPU generating the number of possible

trees contains the nodes and leaf. On the CPU, creates the

number of possible moves in the form of tree. CPU is

responsible for execution control and is responsible for

maintaining a gametree structure. On the GPU unit by

number of threads evaluation of all nodes, leafs takes

place. Using this hybrid approach takes an advantage of

computation on the CPU in the DFS manner as well as

evaluation of nodes by the GPU in a BFS manner.

Using such a combination of CPU and GPU the system

architecture is form as shown in the fig 2. Input in the

form of Problem data set known as matrix which is

provided as an input to CPU. When the matrix is provided

as an input to the system, CPU generates number of

possible trees contains the nodes as well as leaf. CPU is

performs operation like maintaining the tree structure,

process data, generation of the all nodes, and the tree

pruning, also performs checking of leaf nodes, and in the

end solution returned to the root node. Calculation of

many tree nodes is done in the same depth in the current

gametree, which is the breadth-first search (BFS). In

addition, each cycle in the searching process will take in

deepest nodes of the current game tree, which is the depth-

first search (DFS). That means on DFS approach CPU

works to calculate the nodes, since CPU will execute

faster as compare to GPU in this situation. And on BFS

approach, GPU used for calculating the branch and the

leaf nodes in the parallel.

Fig2. System Architecture

V. CONCLUSION

Main focus of this review paper on a Parallelization of

Node based Game Tree Search Algorithms on GPU and

CPU. Parallel GTS algorithm presented three different

approaches for obtaining fast optimal solution of real time

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41108 34

computer games on GPU. By use of hybrid approach on

CPU and GPU architecture, the approach can take

advantage of the capability of GPU to compute nodes in

parallel and GPUs flexibility to accelerate tree search and

also pruning. This approach can be tested by implementing

it for SUDOKU, CHESS and connect6 games.

Implemented results can be compared with the serial

implementation of the game tree search.

REFERENCES

[1] Liang Li, Hong Liu, HaoWang, Taoying Liu, Wei Li, “A Parallel

Algorithm for Game Tree Search using GPGPU”, IEEE Transaction
on Parallel and Distributed Systems, aug, 2015.

[2] K. Rocki and R. Suda, “Parallel minimax tree searching on GPU,”

in Parallel Processing and Applied Mathematics, vol. 6067, R.
Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski,

Eds., Berlin, Germany: Springer, pp. 449–456, 2010

[3] D. Strnad and N. Guid, “Parallel alpha-beta algorithm on the GPU,”
Journal in Computing and Information Technology, vol. 19, no. 4,

pp. 269–274, 2011.

[4] X. Huo, V. T. Ravi, W. Ma, and G. Agrawal, “Approaches for
parallelizing reductions on modern GPU,” International Conference

on High Performance Computing (HIPC), pp. 1–10, 2010.

[5] W. Ma and G. Agrawal, “An integer programming framework for
optimizing shared memory use on GPU,” International Conference

on High Performance Computing, pp. 1–10, 2010.

[6] J. Soman, M. K. Kumar, K. Kothapalli, and P. J. Narayanan,
“Efficient Discrete Range Searching primitives on the GPU with

applications”, International Conference on High Performance

Computing (HiPC), pp. 1-10, 2010.
[7] C. E. Shannon, “Programming a computer for playing chess”,

Philosophical Magazine Series 7, 41(314):256-275, 1950.
[8] G. Karypis and V. Kumar, “Unstructured tree search on SIMD

parallel computers,” IEEE Transaction on Parallel and Distributed

Systems, vol. 5, no. 10, pp. 1057–1072, 1994.

[9] M. G. Brockington and J. Schaeffer, “APHID: Asynchronous

parallel game-tree search,” Journal of Parallel and Distributed

Computing, vol. 60, no. 2, pp. 247–273, 2000.
[10] P. Borovska and M. Lazarova, “Efficiency of parallel minimax

algorithm for GTS,” in Processing International Conference on

Computer Systems and Technologies, pp. 14:1–14:6, 2007.
[11] M. S. Campbell and T. A. Marsland, “A comparison of minimax

tree search algorithms,” report on Artificial Intelligence, University

of Alberta, Canada, vol. 20, no. 4, pp. 347–367, 1983.
[12] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”

Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[13] V. Manohararajah, “Parallel alpha-beta search on shared memory
multiprocessors,” Master„s thesis, Graduate Department of

Electrical and Computer Engineering, University of Toronto,

Toronto, Canada, 2001.
[14] R. M. Hyatt, “The dynamic tree-splitting parallel search algorithm,”

ICCA Journal, vol. 20, no. 1, pp. 3–19, 1997.

	Node-Based Approach
	REFERENCES

